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Abstract
The PT-invariant operator Hν = p2 − (ix)ν defined on L2(R) has a Hilbert–
Schmidt resolvent for real ν > 1, which is trace-class if ν > 2 is not an
integer divisible by 4. For 2 < ν < 4 the spectrum of Hν coincides with the
eigenvalues of the problem posed by Bender and Boettcher on a contour in
the lower complex half-plane. We give the value of the spectral zeta function
Z(1; Hν) and investigate the limiting case ν → +∞.

PACS numbers: 0365D, 0230T, 0260L, 1130E

Let ν > 0 and define the function Uν(x) = −(ix)ν (with −3π/2 < arg(x) < π/2) in the
complex plane cut along the positive imaginary half-axis for non-integer ν. Then, on the real
axis the potential Uν is PT-symmetric, Uν(x) = Uν(−x), but not separately invariant under
reflection (P) and complex conjugation (T) (if ν �= an even integer). Bender and Boettcher
(1998) have introduced the operator

Hν = p2 − (ix)ν (1)

as a paradigmatic PT-invariant generalization of the cubic oscillator with imaginary coupling
constant (ν = 3). The latter had been conjectured by Bessis and Zinn-Justin (Bessis 1995)
to have only positive eigenvalues. The connection between PT-invariance and the reality of
the spectrum has been intensely investigated lately (Bender and Boettcher 1998, Bender et al
1999a,b, Bender et al 2000, Caliceti 2000, Delabaere and Pham 1999, Delabaere and Trinh
2000, Lévai and Znojil 2000, Mezincescu 2000, Shin 2001, Znojil 2000). Apparently, the
reality of the spectrum is not quite robust under PT-invariant perturbations2.

Bender and Boettcher (1998) have defined and studied a spectral problem for (1) by
looking for solutions which decay on a contour connecting a pair of anti-Stokes lines in the

1 Present address: CTSPS, Clark-Atlanta University, Atlanta, GA 30314, USA.
2 Examples of symmetry breaking for increasingly milder perturbations can be found the work of Bender and Boettcher
(1998), Bender et al (1999b), Mezincescu (2000) and in the rather extensive references of Delabaere and Trinh (2000).
The latter have shown that complex eigenvalues appear in the spectrum of p2 + ix3 + iαx for sufficiently large negative
α.
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lower complex half-plane [arg(z) = −π(ν −2)/(2ν + 4) and arg(z) = −π + (ν −2)/(2ν + 4)]
without crossing the cut. For 2 � ν < 4 the ends of this contour are in the same Stokes sectors
as the two real half-axes, so that it can be deformed continuously into the real axis. Thus,
for 2 � ν < 4 the Bender and Boettcher eigenvalues will coincide with those obtained by an
orthodox approach onL2(R). For larger ν, the connection with that approach is not clear. While
the contour procedure yields spectra, the development of an orthodox quantum mechanical
apparatus requires the definition of a suitable space of states, on which the observables should
act. Despite some progress in that direction (Bender and Boettcher 1998, Bender et al 1999b,
Bender et al 2000), it is still unclear what that space of states will be.

In their Comment, Bender and Wang (2001) present a formula for the sum of the inverse
eigenvalues (the spectral zeta function Z(1; Hν)) of the Bender–Boettcher spectral problem
for ν > 2:
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where

A = ABW = 4 sin2
( π
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)
(3)

and find excellent agreement with the results of several numerical and WKB calculations.
In this note, I give the corresponding results for the operator defined by (1) on the domain

intersection D(Hν) = D(p2) ∩ D(|x|ν) ⊂ L2(R) for ν > 2.
Repeating for non-integer ν the arguments in Caliceti et al (1980) shows that Hν is closed

and has a compact, Hilbert–Schmidt resolvent for ν � 1, ν �= 4M . If ν is an integer divisible
by 4, then H4M is symmetric (Hermitian), but not self-adjoint3, with deficiency indices (2, 2).
In this case, there is an infinite (four-parameter) family of self-adjoint extensions. All have
Hilbert–Schmidt resolvents (see, e.g., Caliceti et al 1980).

If ν is a natural number, the solutions of the differential equation

(z − Hν)f = f ′′ + [z + (ix)ν]f = 0 (4)

are entire functions. This has been exploited recently by Shin (2001) for ν = 3 to obtain
bounds on the location of the eigenvalues and the position of the zeros of the eigenfunctions.
For general ν, by Cauchy’s theorem on linear equations the solutions of (4) are holomorphic
in the cut plane. Since the point x = 0 is a regular singularity of the equation, the solutions
and their first derivatives will be continuous on the real axis. For ν �= 4M , f±(x, z)—the
‘Jost solutions’ of (4) which are locally L2, together with their first derivatives, near ±∞—are
unique (up to arbitrary multiplicative factors). At zero energy (z = 0), the ‘Jost solutions’ can
be given explicitly,

f+(x; 0) = x1/2Kµ

[
2µeiχ(ν)x1/2µ

]
. (5)

Here, Kµ is Macdonald’s function,

µ = 1

ν + 2
and χ(ν) =

[
frac

(
ν

4

)
− 1

2

]
π. (6)

The integer and fractionary parts of the real number α are denoted by int(α) and frac(α). The
angle χ(ν), defined in (6) is continuous for ν �= 4M . The values of the phase factor eiχ(ν) lie
in the right half-plane, tending to ±i as ν → 4M ∓ 0. When going from positive x to negative

3 In plain language: if ν �= 4M , then Im(Uν) �= 0 and the closure of the domain D(Hν) cannot contain elements
with finite ‘total energy’, but infinite ‘kinetic energy’. For ν = 4M , the imaginary part of the potential is zero, while
the real part is negative. The closure of D(Hν) contains such elements and the enclosure D(H ∗

ν ) ⊂ D(Hν) is strict.
For ν = 4M + 2 the potential is again real, but positive, and H4M+2 is essentially self-adjoint.
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Figure 1. The ν dependence of Z(1; Hν) from equation (2), with the factor A given by: crosses,
equation (3) and diamonds, equation (7).

ones through the lower half-plane, the phase of the argument of Kµ in (5) goes from χ(ν)

to −2π [1 + int(ν/4)] − χ(ν). One can show that f+(x; 0) has no zeros on the real axis for
ν > 2.4 The function f−(x; 0) can be taken as the PT-conjugate of f+(x; 0).

Proceeding as in Mezincescu (2000), for ν �= 4M the spectral zeta function is given again
by (2), but with an additional term in the factor

A = Aorthodox = ABW + 2
cos

( 4χ(ν)

ν+2

) − cos
(

(ν−2)π

ν+2

)
1 + 2 cos

(
2π
ν+2

) . (7)

For 2 < ν < 4, the phase χ(ν) = (ν − 2)π/4, and the additional term in (7) vanishes, as
expected. Equation (7) is continuous for all ν > 2, but has jumps in its derivative for ν = 4M .
In figure 1 we plot the ν dependence of (2) with A given by (3) and (7).

At the singular points, ν = 4M , we can define two distinguished PT-invariant extensions
H4M−0 and H4M+0 by the (norm) limits of the resolvent from the left and the right. Both satisfy
(7).

For large ν → +∞, the zeta function Zorthodox(1; Hν) goes to the finite limit 2
3 (equal to

the value for a particle confined to (−1, 1), while the Bender–Wang one vanishes as 2π2/ν2—
the limiting value for their deformation (Bender et al 1999a). Actually, one can show that
in the limit ν → +∞, the resolvent kernel of the L2(R) operator Hν tends pointwise to the
resolvent kernel of the restriction of the second derivative to L2(−1, 1) with Dirichlet boundary
conditions.

As a final remark, I am tempted to conjecture that the Bender–Boettcher deformation
provides an analytic continuation of the eigenvalues from the interval ν ∈ (2, 4).

Note added in proof. I have just become aware of important work reported in two preprints by P Dorey, C Dunning
and R Tateo (see Dorey et al (2000, 2001) and references therein). In particular, the 2001 preprint contains a proof of
the reality of the spectrum of equation (1) and some generalizations.

4 This allows us to factorize Hν = − (
d/dx + f ′

+/f+
) (

d/dx − f ′
+/f+

)
. Then, the resolvent kernel is equal to the

product of two upper/lower triangular operators. Both are Hilbert–Schmidt for ν > 2. Thus, the resolvent kernel is
trace class.
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